Dry-Running Rotary Screw Compressors

2-Stage, Free air delivery up to 51 m³/min, Pressure 4, 6, 8 and 10 bar
Long-term efficiency
Compressed air simply has to be available where and whenever it is needed. Kaeser dry-running 2-stage rotary compressors are therefore built to last and to ensure many years of dependable performance. Comprising tried and tested components that have been developed as a result of Kaeser’s near century of experience in mechanical engineering, Kaeser compressors deliver the durability and compressed air availability to meet even the toughest of demands.

Innovation you can trust
Using all of the advantages that Kaeser’s advanced Research and Development Centre in Coburg has to offer, Kaeser’s engineers created an innovative package concept designed around the 2-stage dry-running rotary screw airend. As a result, Kaeser dry-running screw compressors, for example, are available with air-cooling for drive powers up to 355 kW.

Efficiency as standard
KAESER quality and expertise really count when it comes to those all-important total system costs for asset investments such as compressors or complete compressed air supply systems: Lowest possible compressed air costs and maximum availability can be guaranteed only through a combination of perfect interplay between energy efficiency and service/maintenance, and by viewing the compressed air supply system as a whole.

Service-friendly
These versatile systems were engineered for maximum ease-of-use and servicing right from the outset of the design stage. Fewer wearing parts and the use of premium quality materials ensure reduced maintenance requirement, longer service intervals and extended service life. Excellent component accessibility as a result of generously sized maintenance doors and a swing-out cooler are just some of the features that make servicing so effortless.
The new dimension in oil-free compression

With logical component layout and exceptional attention to detail, Kaeser 2-stage dry-running rotary screw compressors were designed with the user in mind. Needless to say, there’s also the peace of mind that comes with Kaeser’s renowned quality.

Long-term efficiency
Compressed air simply has to be available where and whenever it is needed. Kaeser dry-running 2-stage rotary compressors are therefore built to last and to ensure many years of dependable performance. Comprising tried and tested components that have been developed as a result of Kaeser’s near century of experience in mechanical engineering, Kaeser compressors deliver the durability and compressed air availability to meet even the toughest of demands.

Efficiency as standard
KAESER quality and expertise really count when it comes to those all-important total system costs for asset investments such as compressors or complete compressed air supply systems: Lowest possible compressed air costs and maximum availability can be guaranteed only through a combination of perfect interplay between energy efficiency and service / maintenance, and by viewing the compressed air supply system as a whole.

Innovation you can trust
Using all of the advantages that Kaeser’s advanced Research and Development Centre in Coburg has to offer, Kaeser’s engineers created an innovative package concept designed around the 2-stage dry-running rotary screw airend. As a result, Kaeser dry-running screw compressors, for example, are available with air-cooling for drive powers up to 355 kW.

Service-friendly
These versatile systems were engineered for maximum ease-of-use and servicing right from the outset of the design stage. Fewer wearing parts and the use of premium quality materials ensure reduced maintenance requirement, longer service intervals and extended service life. Excellent component accessibility as a result of generously sized maintenance doors and a swing-out cooler are just some of the features that make servicing so effortless.

Potential energy cost savings through heat recovery

Energy cost savings through system optimisation

- Compressed air system investment
- Maintenance costs
- Energy costs
- Potential energy cost savings
Persuasive technology

Proven airends
At the heart of every Kaeser dry-running compressor lies a tried and tested dry-running, two-stage rotary screw airend. Providing optimum performance and dependability, every airend ensures maximum efficiency throughout its entire service life.

Durable coating
The rotors are treated using the special “Ultra Coat” process which provides the innovative and durable coating which is resistant to temperatures up to 300 °C. Because this cost-reducing coating is highly abrasion-proof, its sealing and protection performance remains consistent even after years of operation.

Chromium steel rotors
The second compression stage’s rotors are made from stainless steel, which eliminates the risk of rotor seizing and corrosion because an oxide coating cannot form on the rotors.

Easy-access coupling
The electric motor directly drives the airend with zero transmission losses via a maintenance-free coupling. As there is no need for complicated disassembly work, the easy-access coupling can be exchanged quickly and easily.
Dry-running compression

Optimum performance and reliability – even under the toughest of conditions

SIGMA CONTROL 2
The SIGMA CONTROL 2 ensures efficient control and system monitoring. The large display and RFID reader ensures effective communication and maximum security. Multiple interfaces offer exceptional flexibility, whilst The SD card slot makes updates quick and easy.

Air-cooling reduces operating costs
Air-cooled versions are designed to meet the demands of the toughest operating environments and can be used in ambient temperatures as high as +45°C. A stainless steel pre-cooler and an aluminium aftercooler (DSG-2, FSG-2) are installed downstream from the low and high pressure stages.

Efficient compressed air cooling
Quiet and powerful, the radial fan draws in cool ambient air through the cooler. Its high residual thrust allows connection of long exhaust duct sections. In addition, the radial fan consumes significantly less drive power than conventional axial fans, saving even more energy.

Additional interior ventilation
Dependent on the temperature, the fan continues to operate even after machine shutdown. This ensures dependable venting of exhaust heat from inside the unit.
Dry-running KAESER rotary screw compressors

Quality in detail

Hydraulic inlet valve
The hydraulically operated inlet valves on Kaeser dry-running rotary compressors are unaffected by contamination and condensate. This makes them more reliable and easier to maintain than pneumatic valves.

Dependable oil reservoir ventilation
The microfilter in the oil tank ventilation system prevents intake of oil-laden air. This is a key detail to ensure that compressed air quality is reliably maintained at all times.

Fibre-free pulse damper
Kaeser’s newly developed fibre-free pulse dampers keep pressure losses to an absolute minimum, help maintain consistent air quality and, unlike fibre (mineral wool) versions, do not present a source of contamination for the compressed air.

Effective centrifugal separator
The centrifugal separator removes large volumes of condensate from the compressed air. This significantly reduces the load on downstream treatment systems and therefore saves energy.
Parallel heat exchanger
Both the low and high pressure stages of water-cooled Kaeser dry-running rotary screw compressors are equipped with their own dedicated parallel heat exchanger for enhanced heat transfer. This optimised cooling results in improved specific power performance.

Optimised water cooling
Water-cooled models are equipped with high efficiency air / water heat exchangers. CuNi10Fe cooling pipes with internal lamella fins provide optimum heat transfer and lowest possible compressed air discharge temperatures with minimal pressure loss.

High efficiency IE3 drive motors
In the EU, the use of premium efficiency IE3 motors will become obligatory for drives from 7.5 – 375 kW as from January 1st, 2015. All Kaeser dry-running rotary compressors however are already equipped with these motors.

Jacket-cooled airend
In the places where things really heat up, i.e. in the second compression stage, coolant flows directly through the walls of the airend housing to ensure best possible heat dissipation and therefore efficiency.
Most industrial applications require a source of quality, dry compressed air to prevent the accumulation of condensate in air distribution networks and to minimise the associated risk of costly system failures.

The pressure dew point (PDP) is the temperature at which compressed air reaches its humidity saturation point under pressure. Once the PDP is reached, any further reduction in temperature results in the accumulation of condensation. The required PDP for any given application should therefore be achieved as efficiently as possible. Refrigeration drying is the preferred method of compressed air treatment for pressure dew points down to +3 °C, whilst desiccant dryers, for example, are used for PDPs below +3 °C, although these systems consume significantly more energy.

Long desiccant service life
As the air entering the desiccant dryer section has already been dried to a PDP of +3 °C, it burdens the desiccant to a far lesser extent than untreated compressed air. Desiccant service life of up to 10 years is therefore possible as a result and consequently reduces maintenance costs.

Automatic temperature sensing
Equipped with a dependable thermostat control system, HYBRITEC dryers are able to automatically switch from frost protection operation at colder times of the year to pure refrigeration dryer mode during the warmer months.

HYBRITEC
The intelligent combination for efficient, dependable compressed air drying

However, KAESER KOMPRESSOREN has developed a ground-breaking compressed air drying solution with the introduction of its HYBRITEC series. HYBRITEC dryers deliver the very best of both worlds, as they combine the energy-saving functionality of modern refrigeration dryers with the exceptionally low pressure dew points of desiccant dryers. Available for free air deliveries from 12 m³/min and providing unrivalled efficiency for PDPs down to -40 °C, HYBRITEC dryers are not investment-intensive bespoke systems, but comprise standard Kaeser products that can be precisely tailored to meet the needs of the specific application. Users are therefore able to benefit from maximum system reliability and cost-effective compressed air drying year-round.
Comfortable even when hot
A generously-sized SFC module and efficient cooling of its separate control cabinet allows the use of Kaeser variable speed compressors in ambient temperatures up to +45 °C.

Precision air demand analysis
An Air Demand Analysis (ADA) provides detailed data for compressed air system optimisation. From this data, and using the the Kaeser Energy Saving System (KESS), it is possible to develop the most effective compressed air supply system from several options to suit the needs of the specific application.

SFC module from Siemens
All frequency-controlled Kaeser rotary screw compressors are equipped with proven and efficient frequency converters from Siemens. Electromagnetic compatibility (EMC) of the entire system is tested and certified in accordance with all applicable regulations.

Tailored solutions
In an individually tailored compressed air station, maximum efficiency is ensured through the use of a Kaeser variable speed (SFC) compressor in combination with fixed-speed compressors under co-ordinated 3D-Control by a SIGMA AIR MANAGER.

Dry-running KAESER rotary screw compressors
Optional variable speed control (SFC)
Maximum dependability
Irrespective of (recovered) heat use, the safety pump installed as standard works together with the equalising tank to provide maximum dependability at all times.

Electronically controlled cooling
Water temperature is electronically controlled by the SIGMA CONTROL to ensure optimum reliability and performance. As a result, the temperature stays within the required optimal range and, in turn, improves specific power.

Hot water up to +90 °C
Recovered heat energy can be used in any number of ways. Demand-oriented, variable temperature control up to +90 °C is possible for hot water treatment.

Heat recovery a win
Amazingly, 100 percent of the electrical energy input to a compressor is converted into heat. From that, up to 96 percent is available for heat recovery purposes.
Maximum dependability

Irrespective of (recovered) heat use, the safety pump installed as standard works together with the equalising tank to provide maximum dependability at all times.

Electronically controlled cooling

Water temperature is electronically controlled by the SIGMA CONTROL to ensure optimum reliability and performance. As a result, the temperature stays within the required optimal range and, in turn, improves specific power.

Heat recovery a win

Amazingly, 100 percent of the electrical energy input to a compressor is converted into heat. From that, up to 96 percent is available for heat recovery purposes.

Maximum savings with energy recovery

Recovered heat energy can be used in any number of ways. Demand-oriented, variable temperature control up to +90 °C is possible for hot water treatment.
Equipment

Complete unit
Dry-running rotary screw compressor with 2-stage compression. System equipped with condensate separator, condensate drain and pulse dampers for both compression stages. Ready for operation, fully automatic, silenced.

Airend
2-stage, dry-running rotary screw airend with integrated gearing and collection tank for gear oil. Rotors feature durable coating. 2nd compression stage uses stainless steel rotors and jacket cooling. The 1st stage in CSG-2 models also features jacket cooling.

Drive
Precision gearing as per Agma Q13/ DIN Class 5 with helical spur gears.

Airend
2-stage, dry-running rotary screw airend with integrated gearing and collection tank for gear oil. Rotors feature durable coating. 2nd compression stage uses stainless steel rotors and jacket cooling. The 1st stage in CSG-2 models also features jacket cooling.

Drive motor
Premium efficiency (IE3) drive motor, quality manufacture, IP 55 protection, PT 100 temperature sensor in the stator windings, continuous measurement and monitoring of motor winding temperature.

Cooling
Optionally available with air- or water-cooling. Radial fan with separate drive motor. Exhaust air discharged upwards.

Air-cooled version:
Up to 355 kW (SFC) with five coolers (2 cooler packages comprising a stainless steel and an aluminium cooler for compressed air, one cooler for gear oil; CSG-2 with four coolers).

Water-cooled version:
Up to 355 kW, two compressed air coolers, one gear oil cooler.

Heat recovery (Option)
Optionally available with integrated heat recovery system, parallel switched tubular heat exchanger, safety cooling system, safety pump, expansion tank, water control valves; usable heat power dependent upon cooling water temperature, discharge temperature and output moisture level.

Electrical components
Ventilated control cabinet to IP 54, automatic star-delta starter, overload relay, control transformer.

SIGMA CONTROL 2
“Traffic light” LED indicators show operational status at a glance, plain text display, 30 selectable languages, soft-touch keys with icons, fully automated monitoring and control. Selection of Dual, Quadro and Dynamic control as standard. Interfaces: Ethernet; additional optional communication modules for: Profinet, Modbus, Profinet and Devicenet. SD-card slot for data-logging and updates. RFID reader, web server.

Views

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1660 2355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2095 3190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2310</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2730</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2075 3535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General design

Air-cooling
1. Air filter / air intake
2. Low pressure stage (1st stage, LP)
3. Pulse damper (1st stage)
4. Intercooler
5. Condensate separator
6. High pressure stage (2nd stage, HP)
7. Pulse damper (2nd stage)
8. Aftercooler (with pre-cooler)
9. Condensate separator
10. Compressed air outlet
11. Radial fan
12. Separate interior cooling fan temperature controlled (at machine shutdown)
13. Gear oil cooler

Water-cooling
1. Air filter / air intake
2. Low pressure stage (1st stage, LP)
3. Pulse damper (1st stage)
4. Intercooler
5. Condensate separator
6. High pressure stage (2nd stage, HP)
7. Pulse damper (2nd stage)
8. Aftercooler
9. Condensate separator
10. Compressed air outlet
11. Interior cooling fan
12. Cooling water outlet
13. Cooling water inlet
14. Gear oil cooler
Equipment

Complete unit
Dry-running rotary screw compressor with 2-stage compression. System equipped with condensate separator, condensate drain and pulse dampers for both compression stages. Ready for operation, fully automatic, silenced.

Airend
2-stage, dry-running rotary screw airend with integrated gearing and collection tank for gear oil. Rotors feature durable coating. 2nd compression stage uses stainless-steel rotors and jacket cooling. The 1st stage in CSG-2 models also features jacket cooling.

Drive
Precision gearing as per Agma Q13/DIN Class 5 with helical spur gears.

Drive motor
Premium efficiency (IE3) drive motor, quality manufacture, IP 55 protection, PT 100 temperature sensor in the stator windings, continuous measurement and monitoring of motor winding temperature.

Cooling
Optionally available with air- or water-cooling. Radial fan with separate drive motor. Exhaust air discharged upwards.

Air-cooled version:
Up to 355 kW (SFC) with five coolers (2 cooler packages comprising a stainless steel and an aluminium cooler for compressed air, one cooler for gear oil; CSG-2 with four coolers).

Water-cooled version:
Up to 355 kW, two compressed air coolers, one gear oil cooler.

Heat recovery (Option)
Optionally available with integrated heat recovery system, parallel switched tubular heat exchanger, safety cooling system, safety pump, expansion tank, water control valves; usable heat power dependent upon cooling water temperature, discharge temperature and output moisture level.

Electrical components
Ventilated control cabinet to IP 54, automatic star-delta starter, overload relay, control transformer.

SIGMA CONTROL 2
“Traffic light” LED indicators show operational status at a glance, plain text display, 30 selectable languages, soft-touch keys with icons, fully automated monitoring and control. Selection of Dual, Quadro and Dynamic control as standard. Interfaces: Ethernet; additional optional communication modules for: Profinet DP, Modbus, Profinet and Devicenet. SD-card slot for data logging and updates. RFID reader, web server.

Views

<table>
<thead>
<tr>
<th>Views</th>
<th>Standard (air-cooled)</th>
<th>Standard (water-cooled)</th>
<th>SFC (air-cooled)</th>
<th>SFC (water-cooled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSG-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General design

Air-cooling

1. Air filter / air intake
2. Low pressure stage (1st stage, LP)
3. Pulse damper (1st stage)
4. Intercooler
5. Condensate separator
6. High pressure stage (2nd stage, HP)
7. Pulse damper (2nd stage)
8. Aftercooler (with pre-cooler)
9. Condensate separator
10. Compressed air outlet
11. Radial fan
12. Separate interior cooling fan temperature controlled (at machine shutdown)
13. Gear oil cooler

Water-cooling

1. Air filter / air intake
2. Low pressure stage (1st stage, LP)
3. Pulse damper (1st stage)
4. Intercooler
5. Condensate separator
6. High pressure stage (2nd stage, HP)
7. Pulse damper (2nd stage)
8. Aftercooler
9. Condensate separator
10. Compressed air outlet
11. Interior cooling fan
12. Cooling water outlet
13. Cooling water inlet
14. Gear oil cooler
Technical Specifications

Air - water-cooled

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated motor power</th>
<th>Max. operating pressure</th>
<th>FAD (over all machine at operating pressure)</th>
<th>Dimensions W x D x H</th>
<th>Sound pressure level</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG 140-2</td>
<td>90</td>
<td>18.50</td>
<td>3435 x 1750 x 2380</td>
<td>77 3400</td>
<td>18.50</td>
<td>16.20</td>
</tr>
<tr>
<td>DSG 185-2</td>
<td>110</td>
<td>21.70</td>
<td>3435 x 1750 x 2380</td>
<td>78 3050</td>
<td>21.70</td>
<td>19.20</td>
</tr>
<tr>
<td>DSG 225-2</td>
<td>132</td>
<td>26.15</td>
<td>3435 x 1750 x 2380</td>
<td>79 3700</td>
<td>26.15</td>
<td>23.00</td>
</tr>
<tr>
<td>DSG 265-2</td>
<td>180</td>
<td>26.61</td>
<td>3435 x 1750 x 2380</td>
<td>79 3850</td>
<td>26.61</td>
<td>23.00</td>
</tr>
<tr>
<td>DSG 295-2</td>
<td>200</td>
<td>26.65</td>
<td>3435 x 1750 x 2380</td>
<td>81 4000</td>
<td>26.65</td>
<td>23.00</td>
</tr>
<tr>
<td>FSG 300-2</td>
<td>180</td>
<td>35.10</td>
<td>3055 x 2075 x 2730</td>
<td>78 5000</td>
<td>35.10</td>
<td>24.40</td>
</tr>
<tr>
<td>FSG 350-2</td>
<td>200</td>
<td>42.20</td>
<td>3055 x 2075 x 2730</td>
<td>79 6000</td>
<td>42.20</td>
<td>27.00</td>
</tr>
<tr>
<td>FSG 430-2</td>
<td>250</td>
<td>50.20</td>
<td>3055 x 2075 x 2730</td>
<td>80 6300</td>
<td>50.20</td>
<td>34.00</td>
</tr>
<tr>
<td>FSG 490-2</td>
<td>315</td>
<td>50.10</td>
<td>3055 x 2075 x 2730</td>
<td>81 6400</td>
<td>50.10</td>
<td>34.00</td>
</tr>
<tr>
<td>FSG 590-2</td>
<td>355</td>
<td>50.00</td>
<td>3055 x 2075 x 2730</td>
<td>82 6400</td>
<td>50.00</td>
<td>41.00</td>
</tr>
<tr>
<td>FSG 630-2</td>
<td>355</td>
<td>45.60</td>
<td>3055 x 2075 x 2730</td>
<td>83 6300</td>
<td>45.60</td>
<td>41.00</td>
</tr>
</tbody>
</table>

* FAD = Free Air Delivery (in m³/min)
* Dimensions W x D x H
* Sound pressure level
* Weight

Water-cooled

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated motor power</th>
<th>Max. operating pressure</th>
<th>FAD (over all machine at operating pressure)</th>
<th>Dimensions W x D x H</th>
<th>Sound pressure level</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG 140-2</td>
<td>90</td>
<td>18.50</td>
<td>3435 x 1750 x 2380</td>
<td>77 3400</td>
<td>18.50</td>
<td>16.20</td>
</tr>
<tr>
<td>DSG 185-2</td>
<td>110</td>
<td>21.70</td>
<td>3435 x 1750 x 2380</td>
<td>78 3050</td>
<td>21.70</td>
<td>19.20</td>
</tr>
<tr>
<td>DSG 225-2</td>
<td>132</td>
<td>26.15</td>
<td>3435 x 1750 x 2380</td>
<td>79 3700</td>
<td>26.15</td>
<td>23.00</td>
</tr>
<tr>
<td>DSG 265-2</td>
<td>180</td>
<td>26.61</td>
<td>3435 x 1750 x 2380</td>
<td>79 3850</td>
<td>26.61</td>
<td>23.00</td>
</tr>
<tr>
<td>DSG 295-2</td>
<td>200</td>
<td>26.65</td>
<td>3435 x 1750 x 2380</td>
<td>81 4000</td>
<td>26.65</td>
<td>23.00</td>
</tr>
<tr>
<td>FSG 300-2</td>
<td>180</td>
<td>35.10</td>
<td>3055 x 2075 x 2730</td>
<td>78 5000</td>
<td>35.10</td>
<td>24.40</td>
</tr>
<tr>
<td>FSG 350-2</td>
<td>200</td>
<td>42.20</td>
<td>3055 x 2075 x 2730</td>
<td>79 6000</td>
<td>42.20</td>
<td>27.00</td>
</tr>
<tr>
<td>FSG 430-2</td>
<td>250</td>
<td>50.20</td>
<td>3055 x 2075 x 2730</td>
<td>80 6300</td>
<td>50.20</td>
<td>34.00</td>
</tr>
<tr>
<td>FSG 490-2</td>
<td>315</td>
<td>50.10</td>
<td>3055 x 2075 x 2730</td>
<td>81 6400</td>
<td>50.10</td>
<td>34.00</td>
</tr>
<tr>
<td>FSG 590-2</td>
<td>355</td>
<td>50.00</td>
<td>3055 x 2075 x 2730</td>
<td>82 6400</td>
<td>50.00</td>
<td>41.00</td>
</tr>
<tr>
<td>FSG 630-2</td>
<td>355</td>
<td>45.60</td>
<td>3055 x 2075 x 2730</td>
<td>83 6300</td>
<td>45.60</td>
<td>41.00</td>
</tr>
</tbody>
</table>

SFC versions with variable speed drive

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated motor power</th>
<th>Max. operating pressure</th>
<th>FAD (over all machine at operating pressure)</th>
<th>Dimensions W x D x H</th>
<th>Sound pressure level</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG 140-2</td>
<td>90</td>
<td>18.50</td>
<td>3435 x 1750 x 2380</td>
<td>77 3400</td>
<td>18.50</td>
<td>16.20</td>
</tr>
<tr>
<td>DSG 185-2</td>
<td>110</td>
<td>21.70</td>
<td>3435 x 1750 x 2380</td>
<td>78 3050</td>
<td>21.70</td>
<td>19.20</td>
</tr>
<tr>
<td>DSG 225-2</td>
<td>132</td>
<td>26.15</td>
<td>3435 x 1750 x 2380</td>
<td>79 3700</td>
<td>26.15</td>
<td>23.00</td>
</tr>
<tr>
<td>DSG 265-2</td>
<td>180</td>
<td>26.61</td>
<td>3435 x 1750 x 2380</td>
<td>79 3850</td>
<td>26.61</td>
<td>23.00</td>
</tr>
<tr>
<td>DSG 295-2</td>
<td>200</td>
<td>26.65</td>
<td>3435 x 1750 x 2380</td>
<td>81 4000</td>
<td>26.65</td>
<td>23.00</td>
</tr>
<tr>
<td>FSG 300-2</td>
<td>180</td>
<td>35.10</td>
<td>3055 x 2075 x 2730</td>
<td>78 5000</td>
<td>35.10</td>
<td>24.40</td>
</tr>
<tr>
<td>FSG 350-2</td>
<td>200</td>
<td>42.20</td>
<td>3055 x 2075 x 2730</td>
<td>79 6000</td>
<td>42.20</td>
<td>27.00</td>
</tr>
<tr>
<td>FSG 430-2</td>
<td>250</td>
<td>50.20</td>
<td>3055 x 2075 x 2730</td>
<td>80 6300</td>
<td>50.20</td>
<td>34.00</td>
</tr>
<tr>
<td>FSG 490-2</td>
<td>315</td>
<td>50.10</td>
<td>3055 x 2075 x 2730</td>
<td>81 6400</td>
<td>50.10</td>
<td>34.00</td>
</tr>
<tr>
<td>FSG 590-2</td>
<td>355</td>
<td>50.00</td>
<td>3055 x 2075 x 2730</td>
<td>82 6400</td>
<td>50.00</td>
<td>41.00</td>
</tr>
<tr>
<td>FSG 630-2</td>
<td>355</td>
<td>45.60</td>
<td>3055 x 2075 x 2730</td>
<td>83 6300</td>
<td>45.60</td>
<td>41.00</td>
</tr>
</tbody>
</table>

* FAD = Free Air Delivery (in m³/min)
* Dimensions W x D x H
* Sound pressure level
* Weight

*) FAD for complete unit to ISO 1217:2000. Annex C: absolute inlet pressure 1 bar [a], cooling and air inlet temperature 25°C

**) Sound pressure level as per ISO 2151 and the basic standard ISO 16142, tolerance: ± 3 dB(A)

11-bar versions available upon request. FSG series equipped with SIGMA CONTROL 2 controller from late 2012.
Specifications subject to change.
KAESER – The world is our home

As one of the world’s largest manufacturers of rotary screw compressors, KAESER KOMPRESSOREN is represented throughout the world by a comprehensive network of branches, subsidiary companies and authorised partners in over 100 countries.

With innovative products and services, KAESER KOMPRESSOREN’s experienced consultants and engineers help customers to enhance their competitive edge by working in close partnership to develop progressive system concepts that continuously push the boundaries of performance and compressed air efficiency. Moreover, the decades of knowledge and expertise from this industry-leading system provider are made available to each and every customer via the Kaeser group’s global computer network. These advantages, coupled with KAESER's worldwide service organisation, ensure that all products operate at the peak of their performance at all times and provide maximum availability.